A Bipolar Junction Transistor (a.k.a. a BJT or Bipolar Transistor) is an active semiconductor device formed by two P-N junctions whose function is amplification of an electric current.
Bipolar transistors are made from 3 sections of semiconductor material (alternating P-type and N-type), with 2 resulting P-N junctions. Schematically, a bipolar transistor can be thought of in this fashion:
One P-N junction is between the emitter and the base; the other P-N junction is between the collector and the base. Note that the emitter and collector are usually doped somewhat differently, so they are rarely electrically interchangeable. While the terms "collector" and "emitter" go back to vacuum tube days, the base derives its name from the first point-contact transistors -- here the center connection also formed the mechanical base for the structure. In modern practice, the base region is made as thin as possible to achieve reasonable levels of current gain; it is often only about one millionth of a meter thick.
Bipolar transistors are classified as either NPN or PNP according to the arrangement of their N-type and P-type materials. Their basic construction and chemical treatment is implied by their names. So an NPN transistors is formed by introducing a thin region of P-type material between two regions of N-type material.
On the other hand, a PNP transistor is formed by introducing a thin region of N-type material between two regions of P-type material.
Since the majority and minority current carriers are different for N-type and P-type materials, it stands to reason that the internal operation of the NPN and PNP transistors will also be different. These two basic types of transistors along with their circuit symbols are shown here:
Note that the two symbols are subtly different. The vertical line represents the base (B), the angular line with the arrow on it represents the emitter (E), and the other angular line represents the collector (C). The direction of the arrow on the emitter distinguishes (graphically) the NPN from the PNP transistor. If the arrow points in, (Points iN) the transistor is a PNP. On the other hand if the arrow points out, the transistor is an NPN (Not Pointing iN).
Bear in mind that the arrow always points in the direction of hole flow (current), or from the P-type to N-type sections, no matter whether the P-type section is the emitter or base. On the other hand,electron flow is always "against" the arrow, just like in the junction diode.
As a result, a PNP transistor is "triggered" when its base is pulled low; an NPN transistor is "triggered" when its base is brought high.
Note that the bipolar transistor is a current-amplifying device, unlike the vacuum tube and the field-effect transistor (FET), both of which depend upon voltage changes to operate. It is the amount of current flowing in the base circuit that controls the amount of current flowing in the collector circuit.
Wilf Rigter has graciously contributed the following explanation of bipolar transistor behavior in circuits:
Note that operation of a bipolar transistor depends on the migration of both electrons and holes, in contrast to field-effect transistors, where only one polarity carrier predominates.
Freddy R Vallenilla R
16.791.006
EES SEC 2
No hay comentarios:
Publicar un comentario