domingo, 21 de marzo de 2010

MOSFETs




MOSFET son las siglas de Metal Oxide Semiconductor Field Effect Transistor. Consiste en un transistor de efecto de campo basado en la estructura MOS. Es el transistor más utilizado en la industria microelectrónica. Prácticamente la totalidad de los circuitos integrados de uso comercial están basados en transistores MOSFET.



Historia
Fue ideado teóricamente por el alemán Julius von Edgar Lilienfeld en 1930, aunque debido a problemas de carácter tecnológico y el desconocimiento acerca de cómo se comportan los electrones sobre la superficie del semiconductor no se pudieron fabricar hasta décadas más tarde. En concreto, para que este tipo de dispositivos pueda funcionar correctamente, la intercara entre el sustrato dopado y el aislante debe ser perfectamente lisa y lo más libre de defectos posible. Esto es algo que sólo se pudo conseguir más tarde, con el desarrollo de la tecnología del silicio


Funcionamiento

Un transistor MOSFET consiste en un sustrato de material semiconductor dopado en el que, mediante técnicas de difusión de dopantes, se crean dos islas de tipo opuesto separadas por un área sobre la cual se hace crecer una capa de dieléctrico culminada por una capa de conductor. Los transistores MOSFET se dividen en dos tipos fundamentales dependiendo de cómo se haya realizado el dopaje:
• Tipo nMOS: Sustrato de tipo p y difusiones de tipo n.
• Tipo pMOS: Sustrato de tipo n y difusiones de tipo p.
Las áreas de difusión se denominan fuente(source) y drenador(drain), y el conductor entre ellos es la puerta(gate).




El transistor MOSFET tiene tres estados de funcionamiento:
Estado de corte
Cuando la tensión de la puerta es idéntica a la del sustrato, el MOSFET está en estado de no conducción: ninguna corriente fluye entre fuente y drenador aunque se aplique una diferencia de potencial entre ambos. También se llama mosfet a los aislados por juntura de dos componentes.


Conducción lineal
Al polarizarse la puerta con una tensión negativa (pMOS) o positiva (nMOS), se crea una región de deplexión en la región que separa la fuente y el drenador. Si esta tensión crece lo suficiente, aparecerán portadores minoritarios (electrones en pMOS, huecos en nMOS) en la región de deplexión que darán lugar a un canal de conducción. El transistor pasa entonces a estado de conducción, de modo que una diferencia de potencial entre fuente y drenador dará lugar a una corriente. El transistor se comporta como una resistencia controlada por la tensión de puerta.
Saturación
Cuando la tensión entre drenador y fuente supera cierto límite, el canal de conducción bajo la puerta sufre un estrangulamiento en las cercanías del drenador y desaparece. La corriente entre fuente y drenador no se interrumpe, ya que es debida al campo eléctrico entre ambos, pero se hace independiente de la diferencia de potencial entre ambos terminales.
Aplicaciones
La forma más habitual de emplear transistores MOSFET es en circuitos de tipo CMOS, consistentes en el uso de transistores pMOS y nMOS complementarios. Véase Tecnología CMOS
Las aplicaciones de MOSFET discretos más comunes son:
• Resistencia controlada por tensión.
• Circuitos de conmutación de potencia (HEXFET, FREDFET, etc).
• Mezcladores de frecuencia, con MOSFET de doble puerta.
Ventajas
La principal aplicación de los MOSFET está en los circuitos integrados, p-mos, n-mos y c-mos, debido a varias ventajas sobre los transistores bipolares:
• Consumo en modo estático muy bajo.
• Tamaño muy inferior al transistor bipolar (actualmente del orden de media micra).
• Gran capacidad de integración debido a su reducido tamaño.
• Funcionamiento por tensión, son controlados por voltaje por lo que tienen una impedencia de entrada muy alta. La intensidad que circula por la puerta es del orden de los nanoamperios.
• Un circuito realizado con MOSFET no necesita resistencias, con el ahorro de superficie que conlleva.
• La velocidad de conmutación es muy alta, siendo del orden de los nanosegundos.
• Cada vez se encuentran más en aplicaciones en los convertidores de alta frecuencias y baja potencia.


Explore the seven wonders of the world Learn more!

Heterojunction Bipolar Transistor (HBT)



The heterojunction bipolar transistor (HBT) is an improvement of the bipolar junction transistor (BJT) that can handle signals of very high frequencies up to several hundred GHz. It is common in modern ultrafast circuits, mostly radio-frequency (RF) systems, as well as applications requiring a high power efficiency, such as power amplifiers in cellular phones. The idea of employing a heterojunction is as old as the conventional BJT, dating back to a patent from 1951
The principal difference between the BJT and HBT is in the use of differing semiconductor materials for the emitter and base regions, creating a heterojunction. The effect is to limit the injection of holes from the base into the emitter region, since the potential barrier in the valence band is higher than in the conduction band. Unlike BJT technology, this allows a high doping density to be used in the base, reducing the base resistance while maintaining gain. The efficiency of the device is measured by the Kroemer factor, after Herbert Kroemer who received a Nobel Prize for his work in this field in 2000 at the University of California, Santa Barbara.
Materials used for the substrate include silicon, gallium arsenide, and indium phosphide, while silicon / silicon-germanium alloys, aluminium gallium arsenide / gallium arsenide, and indium phosphide / indium gallium arsenide are used for the epitaxial layers. Wide-bandgap semiconductors are especially promising, eg. gallium nitride and indium gallium nitride.
In SiGe graded heterostructure transistors, the amount of germanium in the base is graded, making the bandgap narrower at the collector than at the emitter. That tapering of the bandgap leads to a field-assisted transport in the base, which speeds transport through the base and increases frequency response.



Fabrication
Due to the need to manufacture HBT devices with extremely high-doped thin base layers, molecular beam epitaxy is principally employed. In addition to base, emitter and collector layers, highly doped layers are deposited on either side of collector and emitter to facilitate an ohmic contact, which are placed on the contact layers after exposure by photolithography and etching. The contact layer underneath the collector is, named subcollector, is an active part of the transistor.
Other techniques are used depending on the material system. IBM and others use UHV CVD for SiGe; other techniques used include MOVPE for III-V systems

Metalorganic Chemical Vapor Deposition
This process is used to manufacture compound semiconductor devices, which consist of thin films of gallium arsenide, indium phosphide and other alloys of the group III and V elements of the Periodic Table. Compound semiconductors are used in a vast array of electronic and photonic devices, such as in solid-state lasers, light-emitting diodes, space solar cells, and high-speed transistors. These are critically needed components in both optical and wireless telecommunications systems.






Compound Semiconductor devices are used for the solar panels and the RF transmitters and receivers in communications satelites (pictured is a DirecTV satelite by Hughes Electronics).
In the metalorganic chemical vapor deposition (MOCVD) process, volatile precursors, e.g., trimethylindium, trimethylgallium and phosphine, are fed to the reactor in hydrogen carrier gas. When these molecules flow over the hot substrate, they decompose and deposit a thin film, e.g., InGaP. By depositing a compound that is lattice matched to the substrate (e.g., GaAs (001)), an epitaxial single crystal is grown. A device is produced by varying the composition and doping in the layers, while maintaining lattice matching at all times.







Heterojunction bipolar transistor (HBT) consisting of an n-type GaAs collector, p+ GaAs base, only 20 nm thick, and an InGaP emitter. These devices amplify RF signals by 20 times at a frequency of 1.9 GHz.
An example of a device grown by MOCVD is the heterojunction bipolar transistor (HBT) pictured above. This device is used extensively in digital cellular telephones and in high-speed communication networks. The critical layers in this device are only 10 to 20 nm thick. Thus, our research is at the cutting edge of Nanoscience and Technology.
During MOCVD, a series of surface reactions occur as shown in the diagram below. These include adsorption and desorption of the precursor molecules, surface diffusion, nucleation and growth, and desorption of reaction products. In our laboratory, we characterize these surface reactions, and in particular, identify the sites on the semiconductor surface that mediate them. By understanding the atomic-scale processes that govern thin film growth, we make it possible to build new and more powerful devices.


At UCLA, the surface chemistry of MOCVD is revealed with state-of-the-art instruments, including reflectance difference spectroscopy, infrared spectroscopy, electron diffraction, x-ray photoemission, scanning tunneling microscopy, and ab initio molecular cluster calculations. Click on Facilities to learn more about our capabilities. In addition, you can check out some of the surfaces and surface sites that we have characterized by going to the STM Gallery and Molecular Clusters links, or by viewing our Publications.
Careers
Students working in this field learn all the skills necessary for rewarding careers in the microelectronics, communications, and high-tech materials industries. Our graduates are in great demand, and have landed exciting jobs with fast growing companies. You can see where our graduates have gone by clicking on Recent Graduates


Invite your mail contacts to join your friends list with Windows Live Spaces. It's easy! Try it!

BANDGAD SEMICONDUCTORS


Wide bandgap semiconductors are semiconductor materials with electronic band gaps larger than one or two electronvolts (eV). The exact threshold of "wideness" often depends on the application, such as optoelectronic and power devices. Wide bandgap materials are often utilized in applications in which high-temperature operation is important.
Motivation Driving Utilization in Devices
Solid state lighting could reduce the amount of energy required to provide lighting as compared with incandescent lights, which are associated with a light output of less than 20 lumens per watt. The efficiency of light emitting diodes is on the order of 160 lumens per watt. Wide bandgap semiconductors can be used to create light throughout the visible spectrum.
Wide bandgap semiconductors can also be used in RF signal processing. Silicon-based power transistors are reaching limits of operating frequency, breakdown voltage, and power density. Wide bandgap materials can be used in high-temperature and power switching applications.
Materials

There are many III-V and II-VI compound semiconductors with high bandgaps. The only high bandgap materials in group IV are diamond and silicon carbide (SiC).
Aluminium nitride (AlN) can be used to fabricate ultraviolet LEDs with wavelengths down to 200-250 nm.
Gallium nitride (GaN) is used to make blue LEDs and lasers.
Material Properties

Wide bandgap materials are defined as semiconductors with bandgaps greater than 1.7 eV.
Bandgap

The magnitude of the coulombic potential determines the bandgap of a material, and the size of atoms and electronegativities are two factors that determine the bandgap. Materials with small atoms and strong, electronegative atomic bonds are associated with wide bandgaps. Smaller lattice spacing results in a higher perturbing potential of neighbors.
Elements high on the periodic table are more likely to be wide bandgap materials. With regard to III-V compounds, nitrides are associated with the largest bandgaps, and, in the II-VI family, oxides are generally considered to be insulators.
Bandgaps can often be engineered by alloying, and Vegard's Law states that there is a linear relation between lattice constant and composition of a solid solution at constant temperature.
The position of the conduction band minima versus maxima in the band diagram determine whether a bandgap is direct or indirect. Most wide bandgap materials are associated with a direct bandgap, with SiC and GaP as exceptions.

Optical Properties
The minimum photon energy that is needed to excite an electron into the conduction band is associated with the bandgap of a material. When electron-hole pairs undergo recombination, photons are generated with energies that correspond to the magnitude of the bandgap.
A phonon is required in the process of absorption or emission in the case of an indirect bandgap. There must be a direct bandgap in applications of optical devices.
Breakdown Field

Impact ionization is often attributed to be the cause of breakdown. At the point of breakdown, electrons in a semiconductor are associated with sufficient kinetic energy to produce carriers when they collide with lattice atoms.
Wide bandgap semiconductors are associated with a high breakdown voltage. This is due to a larger electric field required to generate carriers through impact mechanism.
At high electric fields, drift velocity saturates due to scattering from optical phonons. A higher optical phonon energy results in fewer optical phonons at a particular temperature, and there are therefore fewer scattering centers, and electrons in wide bandgap semiconductors can achieve high peak velocities.
The drift velocity, reaches a peak at an intermediate electric field and undergoes a small drop at higher fields. Intervalley scattering is an additional scattering mechanism at large electric fields, and it is due to a shift of carriers from the lowest valley of the conduction band to the upper valleys, where the lower band curvature raises the effective mass of the electrons and lowers mobility. The drop in drift velocity at high electric fields due to intervalley scattering is small in comparison to high saturation velocity that results from low optical phonon scattering. There is therefore an overall higher saturation velocity.
Saturation Velocity



High effective masses of charge carriers are a result of low band curvatures, which correspond to low mobility. Fast response times of devices with wide bandgap semiconductors is due to the high carrier drift velocity at large electric fields, or saturation velocity.

Bandgap Discontinuity

When wide bandgap semiconductors are used in heterojunctions, band discontinuities formed at equilibrium can be a design feature, although the discontinuity can result in complications when creating ohmic contacts.
Polarization
Wurtzite and zincblende structures characterize most wide bandgap semiconductors. Wurtzite phases allow spontaneous polarization in the (0001) direction. A result of the spontaneous polarization and piezoelectricity is that the polar surfaces of the materials are associated with higher sheet carrier density than the bulk.The polar face produces a strong electric field, which creates high interface charge densities.
Thermal Properties
Melting temperatures, thermal expansion coefficients, and thermal conductivity can be considered to be secondary properties that are essential in processing, and these properties are related to the bonding in wide bandgap materials. Strong bonds result in higher melting temperatures and lower thermal expansion coefficients. A high Debye temperature results in a high thermal conductivity. With such thermal properties, heat is easily removed.


Explore the seven wonders of the world Learn more!

HEMT



Los HEMT son Transistores tipo FET, en que se reemplaza el canal de conducción por una juntura en la que se unen dos materiales semiconductores con diferentes brechas entre las bandas de conducción y de valencia, lo que produce una capa muy delgada en la cual el nivel de Fermi esta un poco por sobre la banda de conducción, por otro lado los portadores quedan confinados a una capa tan angosta que se los puede describir como un gas de electrones de dos dimensiones. Por estas dos razones los portadores de carga adquieren una muy alta movilidad y una alta velocidad de saturación, habilitándolos para reaccionar a campos que varían a muy altas frecuencias, como también reduce muy significativamente el efecto de dispersión que los átomos de dopaje producen sobre los portadores de carga rediciendo en gran medida el ruido que este dispositivo emite.
Normalmente los dos materiales semiconductores tiene la misma estructura cristalina permitiendo un adecuado calce entre estas, esto con el objeto de evitar que los portadores queden atrapados en las discontinuidades que se podrían producir. Reduciendo su rendimiento.
Existe un tipo de HEMT en los cuales esto no se cumple, los pseudomorphic HEMT (PHEMT), en ellos se pone una capa extremadamente delgada de de unos de los materiales, tanto que esta se deforma para calzar con el otro material. Con esto se logran brechas de energía mucho más altas permitiendo un mejor rendimiento del transistor.
Otra forma de lograr lo anterior es la inserción de una capa muy delgada de adaptación entre los dos materiales de forma que esta se la encargada de unir las dos estructuras cristalinas, esto presenta una ventaje cuando la capa de adaptaciones esta construida con AlInAs, en este material la concentración de In es graduada de forma de calzar las estructuras cristalinas, entonces se tiene que una alta concentración de In produce alta ganancia y una baja concentración produce bajo ruido


Discover the new Windows Vista Learn more!

Military communication


Historically, the first military communications had the form of sending/receiving simple signals (often hidden or encoded to be unrecognizable for the enemy). Respectively, the first distinctive tactics of military communications were called Signals, while units specializing in those tactics received the Signal Corps name. Later Signals and Signaller became a highly-distinct military occupation dealing rather with general communications methods (similar to those in civil use) than with weapons.
Present-day militaries of an informational society conduct very intense and complicated communicating activities on a daily basis, using modern high-tech telecommunications and computing methods. Only a small part of these activities is immediately related to the combat actions. That's why some prefer the term "military communications".
In 1934 the USSR invented the first military based equipment inside an automotive vehicle. s


Get news, entertainment and everything you care about at Live.com. Check it out!

MESFET




MESFET stands for Metal Semiconductor Field Effect Transistor. It is quite similar to a JFET in construction and terminology. The difference is that instead of using a p-n junction for a gate, a Schottky (metal-semiconductor) junction is used. MESFETs are usually constructed in compound semiconductor technologies lacking high quality surface passivation such as GaAs, InP, or SiC, and are faster but more expensive than silicon-based JFETs or MOSFETs. Production MESFETs are operated up to approximately 45 GHz[1], and are commonly used for microwave frequency communications and radar. From a digital circuit design perspective, it is increasingly difficult to use MESFETs as the basis for digital integrated circuits as the scale of integration goes up, compared to CMOS silicon based fabrication.

The MESFET differs from the common insulated gate FET in that there is no insulator under the gate over the active switching region. This implies that the MESFET gate should, in transistor mode, be biased such that one does not have a forward conducting metal semiconductor diode instead of a reversed biased depletion zone controlling the underlying channel. While this restriction inhibits certain circuit possibilities, MESFET analog and digital devices work reasonably well if kept within the confines of design limits. The most critical aspect of the design is the gate metal extent over the switching region. Generally the narrower the gate modulated carrier channel the better the frequency handling abilities, overall. Spacing of the source and drain with respect to the gate, and the lateral extent of the gate are important though somewhat less critical design parameters. MESFET current handling ability improves as the gate is elongated laterally, keeping the active region constant, however is limited by phase shift along the gate due to the transmission line effect. As a result most production MESFETs use a built up top layer of low resistance metal on the gate, often producing a mushroom-like profile in cross section.


Explore the seven wonders of the world Learn more!

Bipolar junction transistor



A bipolar (junction) transistor (BJT) is a three-terminal electronic device constructed of doped semiconductor material and may be used in amplifying or switching applications. Bipolar transistors are so named because their operation involves both electrons and holes. Charge flow in a BJT is due to bidirectional diffusion of charge carriers across a junction between two regions of different charge concentrations. This mode of operation is contrasted with unipolar transistors, such as field-effect transistors, in which only one carrier type is involved in charge flow due to drift. By design, most of the BJT collector current is due to the flow of charges injected from a high-concentration emitter into the base where they are minority carriers that diffuse toward the collector, and so BJTs are classified as minority-carrier devices


Get news, entertainment and everything you care about at Live.com. Check it out!

Bipolar Junction Transistors (BJTs):


This section will, in no way, tell you everything about transistors. It will just give you a general idea what transistors are and how they may be used in car audio. The two main types of transistors are bipolar transistors and field effect transistors.
A bipolar transistor uses a small current to control a larger current, a little like a relay. Bipolar transistors generally have 3 terminals. The control terminal is called the base. The other 2 terminals are known as the emitter and the collector and they carry virtually all of the current flowing through the transistor. There are 2 basic configurations of bipolar transistors, one is an 'NPN' the other is a 'PNP'. The two are very similar. The biggest difference is the direction of current flow through the collector and emitter. For now we will mainly discuss the NPN transistor.
Current Control:
OK, I said that a transistor is sorta like a relay. Remember that you have to have a certain amount of voltage across the coil of a relay for the relay to engage. A transistor needs to have a small amount of voltage difference between the base and the emitter. The required voltage is usually about .6 volts. On an NPN transistor, the base must have a positive voltage with respect to the emitter. Look at the diagram below. It shows the schematic symbol for an NPN bipolar transistor (left) and a PNP bipolar transistor. Note the names of the individual terminals.

One problem faced by installers is the need to reliably switch a relay when the switching output from the control device is less than the 12 volts needed to actuate the relay. In the first diagram, you can see that the voltage applied to the resistor is 0v D.C. and the relay contacts are not closed. In the next diagram, you will see that 12 volts D.C. is applied to the resistor and the relay contacts are closed (because the transistor is now conducting current).
You no doubt noticed the resistor connected to the base of the transistor. This is to prevent damage to the transistor. If the voltage applied to the base is greater than approximately .6 volts (with respect to the emitter) the transistor may be damaged. Think of it like this... (I know my analogies ARE lame, but they will help some people) If you were turning a light switch on with the blade on the front of a bulldozer (don't try this at home, kids), you would have to be very precise in positioning the blade to prevent damaging the switch. If you connected the switch to the dozer blade with a rubber band, the dozer blade could still turn on the switch and the blade could go as high as physically possible without destroying the switch. Now, what if the rubber band is too strong or too weak? The switch might still be destroyed if the rubber band was too strong or, if the rubber band is too weak, the switch may not be switched 'on' at all (even at the highest position of the dozer blade). The same is true with the transistor. If a resistor with a low resistance is connected in series with the base and a high voltage is applied to the resistor, the transistor may still be destroyed. If the resistor has a very high resistance and a voltage is applied to it, the transistor may not be fully turned on. If a transistor is only partially turned on, it means that there will be a voltage drop between the collector and the emitter of the transistor and the transistor may become hot.
If a transistor is connected as shown in the previous diagram, there will be a voltage drop across it because the transistor cannot be turned 'on' enough to have absolutely no voltage across it while current is flowing through it. Since there is a voltage drop across the transistor and current flowing through it, there will be power dissipation in the form of heat. The amount of heat produced is determined by the power dissipation. If the transistor is not mounted to a heat sink, it may be destroyed by the heat.


Invite your mail contacts to join your friends list with Windows Live Spaces. It's easy! Try it!

Diodo Varicap



El diodo de capacidad variable o Varactor (Varicap) es un tipo de diodo que basa su funcionamiento en el fenómeno que hace que la anchura de la barrera de potencial en una unión PN varíe en función de la tensión inversa aplicada entre sus extremos. Al aumentar dicha tensión, aumenta la anchura de esa barrera, disminuyendo así la capacidad del diodo. De este modo se obtiene un condensador variable controlado por tensión. Los valores de capacidad obtenidos van desde 1 a 500 pF. La tensión inversa mínima tiene que ser de 1 V.
La aplicación de estos diodos se encuentra, sobre todo, en la sintonía de TV, modulación de frecuencia en transmisiones de FM y radio y en los osciladores controlados por voltaje (oscilador controlado por tensión).
En tecnología de microondas se pueden utilizar como limitadores: al aumentar la tensión en el diodo, su capacidad varía, modificando la impedancia que presenta y desadaptando el circuito, de modo que refleja la potencia incidente.


Invite your mail contacts to join your friends list with Windows Live Spaces. It's easy! Try it!

Diodo Schottky



El diodo Schottky o diodo de barrera Schottky, llamado así en honor del físico alemán Walter H. Schottky, es un dispositivo semiconductor que proporciona conmutaciones muy rápidas entre los estados de conducción directa e inversa (menos de 1ns en dipositivos pequeños de 5 mm de diámetro) y muy bajas tensiones umbral (también conocidas como tensiones de codo, aunque en inglés se refieren a ella como "knee", o sea, de rodilla). La tensión de codo es la diferencia de potencial mínima necesaria para que el diodo actúe como conductor en lugar de circuito abierto; esto, claro, dejando de lado la región Zener, que es cuando más bien existe una diferencia de potencial lo suficientemente negativa para que -a pesar de estar polarizado en contra del flujo de corriente- éste opere de igual forma como lo haría regularmente.
A frecuencias bajas un diodo normal puede conmutar fácilmente cuando la polarización cambia de directa a inversa, pero a medida que aumenta la frecuencia el tiempo de conmutación puede llegar a ser muy bajo, poniendo en peligro el dispositivo.
El diodo Schottky está constituido por una unión metal-semiconductor (barrera Schottky), en lugar de la unión convencional semiconductor P - semiconductor N utilizada por los diodos normales.
Así se dice que el diodo Schottky es un dispositivo semiconductor "portador mayoritario". Esto significa que, si el cuerpo semiconductor está dopado con impurezas tipo N, solamente los portadores tipo N (electrones móviles) desempeñarán un papel significativo en la operación del diodo y no se realizará la recombinación aleatoria y lenta de portadores tipo N y P que tiene lugar en los diodos rectificadores normales, con lo que la operación del dispositivo será mucho más rápida.


Invite your mail contacts to join your friends list with Windows Live Spaces. It's easy! Try it!

Diodo Gunn


Es una forma de diodo usado en la electrónica de alta frecuencia. A diferencia de los diodos ordinarios construidos con regiones de dopaje P o N, solamente tiene regiones del tipo N, razón por lo que impropiamente se le conoce como diodo. Existen en este dispositivo tres regiones; dos de ellas tienen regiones tipo N fuertemente dopadas y una delgada región intermedia de material ligeramente dopado. Cuando se aplica un voltaje determinado a través de sus terminales, en la zona intermedia el gradiente eléctrico es mayor que en los extremos. Eventualmente esta zona empieza a conducir esto significa que este diodo presenta una zona de resistencia negativa.
La frecuencia de la oscilación obtenida a partir de este efecto, es determinada parcialmente por las propiedades de la capa o zona intermedia del diodo, pero también puede ser ajustada exteriormente. Los diodos Gunn son usados para construir osciladores en el rango de frecuencias comprendido entre los 10 Gigahertz y frecuencias aún más altas (hasta Terahertz). Este diodo se usa en combinación con circuitos resonantes construidos con guías de ondas, cavidades coaxiales y resonadores YIG (monocristal de granate Itrio y hierro, Yttrium Iron Garnet por sus siglas en inglés) y la sintonización es realizada mediante ajustes mecánicos, excepto en el caso de los resonadores YIG en los cuales los ajustes son eléctricos.
Los diodos Gunn suelen fabricarse de arseniuro de galio para osciladores de hasta 200 GHz, mientras que los de Nitruro de Galio pueden alcanzar los 3 Terahertz.
El dispositivo recibe su nombre del científico británico, nacido en Egipto, John Battiscombe Gunn quien produjo el primero de estos diodos basado en los cálculos teóricos del profesor y científico británico Cyril Hilsum.


Get news, entertainment and everything you care about at Live.com. Check it out!
Diodos semiconductores
Es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con características similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña.
Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.
Los primeros diodos eran válvulas grandes en chips o tubos de vacío, también llamadas válvulas termoiónicas constituidas por dos electrodos rodeados de vacío en un tubo de cristal, con un aspecto similar al de las lámparas incandescentes. El invento fue realizado en 1904 por John Ambrose Fleming, de la empresa Marconi, basándose en observaciones realizadas por Thomas Alva Edison.- Al igual que las lámparas incandescentes, los tubos de vacío tienen un filamento (el cátodo) a través del que circula la corriente, calentándolo por efecto Joule. El filamento está tratado con óxido de bario, de modo que al calentarse emite electrones al vacío circundante; electrones que son conducidos electrostáticamente hacia una placa característica corvada por un muelle doble cargada positivamente (el ánodo), produciéndose así la conducción. Evidentemente, si el cátodo no se calienta, no podrá ceder electrones. Por esa razón los circuitos que utilizaban válvulas de vacío requerían un tiempo para que las válvulas se calentaran antes de poder funcionar y las válvulas se quemaban con mucha facilidad.
Un fotodiodo es un semiconductor construido con una unión PN, sensible a la incidencia de la luz visible o infrarroja. Para que su funcionamiento sea correcto se polariza inversamente, con lo que se producirá una cierta circulación de corriente cuando sea excitado por la luz. Debido a su construcción, los fotodiodos se comportan como células fotovoltaicas, es decir, en ausencia de luz exterior generan una tensión muy pequeña con el positivo en el ánodo y el negativo en el cátodo. Esta corriente presente en ausencia de luz recibe el nombre de corriente de oscuridad.
 
 


Invite your mail contacts to join your friends list with Windows Live Spaces. It's easy! Try it!

Principio Básico de funcionamiento SONAR

Recibe su nombre del acrónimo inglés (Sound Navigation And Ranging). El sónar se aprovecha de la trasmisión de ondas sonoras a través del agua para poder recoger información del fondo de un modo similar a lo que realiza el radar en tierra firme. A pesar de que según de que tipo sea su funcionamiento será diferente, el fenómeno físico en el que se basan todos es el mismo.
Cabe preguntarse por que no se emplean ondas electromagnéticas por el agua, es decir, por que el sónar emplea ondas mecánicas en vez de ondas electromagnéticas? La respuesta hay que buscarla en el medio de transmisión. Hay dos factores que desaconsejan el uso de ondas similares al radar en el mar:
1) El agua salada es buena conductora, y amortigua enormemente las ondas de naturaleza similar al radar. Para ser útil su implementación habría que aumentar mucho la potencia o bien disminuir la frecuencia, lo que obligaría a emplear antenas más grandes.
2) El sonido se propaga a mayor celeridad cuanto menos se pueda comprimir el medio de transmisión. Dado que el agua salada es un líquido, menos compresible que el aire, se propagará con celeridad mayor en agua que en aire.
Es correcto hablar de celeridad, no de velocidad, porque el sonido es una onda esférica y por tanto se transmite en todas las direcciones. No obstante la celeridad con la que el sonido de propaga en el mar no es uniforme, y el comportamiento de los rayos sonoros, así se designa a las trayectorias que siguen los frentes de ondas, depende de este hecho.
Así pues hay tres factores determinantes en la celeridad que son: . TEMPERATURA . SALINIDAD . PRESIÓN El grado de influencia de los mismos en el valor de la celeridad ha sido objeto de investigación durante muchos años y se ha acometido en sentido teórico, mediante formulación matemática y en sentido experimental, lo que ha permitido obtener fórmulas empíricas a partir de las observaciones realizadas. El primer resultado práctico fue la formula de DEL GROSSO en 1960, seguido del de WILSON y perfeccionado por MACKENZIE en 1981 cuyo resultado es:
c = 1448,96 + 4.591 T - 0,05304 T2 + 0,0163 D + 1,34 (S-35)
c: Celeridad en mts/seg. T: Temperatura en °C. Entre 0 y 30. D: Produndidad en metros. Entre 0 y 8.000. S: Salinidad en partes por mil. Entre 30 y 40. A pesar de que existen otros factores que pueden alterar la celeridad, pueden considerarse irrelevantes en comparación con los ya citados. Como consecuencia de la variación de la celeridad en el plano vertical, podemos decir que el mar se haya estratificado en zonas, en cada una de las cuales los rayos sonoros tendrán distinto comportamiento. Para estudiar las estratificaciones se les asigna un valor por cada una de las variables que intervienen llamados GRADIENTES, y que se obtienen mediante la relación entre la diferencia de valores de la variable y la diferencia de valores en la funcion. El GRADIENTE DE TEMPERATURA a presión y salinidad constantes es de +3 mts./seg. por °C de aumento. El GRADIENTE DE SALINIDAD a temperatura y presión constantes es de +1,2 mts./seg. por cada 1 por mil de aumento. El GRADIENTE DE PRESION a temperatura y salinidad constantes es de 0,016 mts./seg. por cada metro de aumento de profundidad. Representando en un grafico los valores dos a dos de celeridad-temperatura, celeridad-salinidad y celeridad-presión, las estratificaciones quedan definidas por los puntos en los que la grafica sufre una variación brusca. El sónar está compuesto por un transmisor, un emisor, un receptor y un indicador. El transmisor emite un haz de impulsos ultrasónicos a través del emisor. Cuando chocan con un objeto los impulsos se reflejan y forman una señal de eco que es captada por el receptor. El receptor amplifica la energía de las ondas del eco y genera una señal que es enviada al indicador, constituido por una pantalla en la que se ve el objeto en el que han rebotado las ondas.  

Tipos de sónar

Existen dos tipos: Activo y pasivo.
En el sónar activo se lanza una señal mediante un emisor. Dicha señal al encontrar un obstáculo vuelve a ser recogida, al rebotar por un receptor. Mediante el análisis de tiempos se puede establecer, conocida la celeridad del sonido en el medio, donde esta el obstáculo. Mediante haces de sondas se puede hoy en día conocer la forma del mismo e incluso su composición, teniendo en cuenta cuanta señal es absorbida y cuanta devuelta. El sónar Pasivo se limita a escuchar el sonido que proviene de los objetos que se encuentran sumergidos. Estos dispositivos reciben directamente el ruido producido por el objeto y el camino que recorre la onda es la distancia existente entre el objeto y el receptor del ruido. El funcionamiento de gran parte de las sondas empleadas en batimetría se basa en el principio de funcionamiento del sónar.

Hidrófonos

Un hidrófono es un transductor de sonido a electricidad para ser usado en agua o en otro líquido, de forma análoga al uso de un micrófono en el aire. Un hidrófono también se puede emplear como emisor pero no todos los hidrófonos tienen esta capacidad. En el caso del sónar será el encargado de emitir/recibir los sonidos necesarios para su funcionamiento. El primer sónar operativo fue construido por Reginald Fessenden en los Estados Unidos en 1914. Este dispositivo empleaba un oscilador de cobre electromagnético que emitía un ruido de baja frecuencia, a continuación conmutaba a un modo de escucha para recibir el eco. Debido a este tosco modo de operación no era demasiado preciso en la determinación de la dirección del blanco. El primer dispositivo denominado hidrófono fue desarrollado cuando la tecnología maduró y se emplearon ondas ultrasónicas que mejoraban la capacidad de detección. Los ultrasonidos se generan mediante un mosaico de cristales de cuarzo delgados pegados entre ellos por láminas de acero de forma que se obtienen frecuencias de resonancia por encima de 150 KHz.
ASIGNATURA: CAF
PUBLICACIÓN REALIZADA POR JHONY BAUTISTA C.I- 18566744
FUENTE:
http://www.lpi.tel.uva.es/~nacho/docencia/ing_ond_1/trabajos_06_07/io7/public_html/sonar1.html

Get news, entertainment and everything you care about at Live.com. Check it out!

¿Por qué es audible los impulsos de sónar activo si son en realidad ultrasonidos


?

El sonar activo usa un emisor de sonido y un receptor. Cuando los dos están en el mismo lugar se habla de funcionamiento monoestático. Cuando el emisor y el receptor están separados, de funcionamiento biestático. Cuando se usan más emisores o receptores espacialmente separados, de funcionamiento multiestático. La mayoría de los equipos de sonar son monoestáticos, usándose la misma matriz para emisión y recepción, aunque cuando la plataforma está en movimiento puede ser necesario considerar que esta disposición funciona biestáticamente. Los campos de sonoboyas activas pueden funcionar multiestáticamente.
El sonar activo crea un pulso de sonido, llamado a menudo un «ping», y entonces oye la reflexión (eco) del mismo. Este pulso de sonido suele crearse electrónicamente usando un proyecto sonar formado por un generador de señal, un amplificador de potencia y un transductor o matriz electroacústica, posiblemente un conformador de haces. Sin embargo, puede crearse por otros medios, como por ejemplo químicamente, usando explosivos, o térmicamente mediante fuentes de calor.
Para calcular la distancia a un objeto se mide el tiempo desde la emisión del pulso a la recepción de su eco y se convierte a una longitud conociendo la velocidad del sonido. Para medir el rumbo se usan varios hidrófonos, midiendo el conjunto el tiempo de llegada relativo a cada uno, o bien una matriz de hidrófonos, midiendo la amplitud relativa de los haces formados mediante un proceso llamado conformación de haz. El uso de una matriz reduce la respuesta espacial de forma que para lograr una amplificadora cobertura se emplean sistemas multihaces. La señal del blanco (si existe) junto con el ruido se somete entonces a un procesado de señal, que para los equipos simples puede ser sólo una medida de la potencia. Se presenta entonces el resultado a algún tipo de dispositivo de decisión que califica la salida como señal o ruido. Este dispositivo puede ser un operador con auriculares o una pantalla, en los equipos más sofisticado un software específico.

  Pueden realizarse operaciones adicionales para clasificar el blanco y localizarlo, así como para medir su velocidad.

El pulso puede ser de frecuencia constante o un pulso de frecuencia modulada (chirp) para permitir la compresión de pulso en la recepción. Los equipos simples suelen usar el primero con un filtro lo suficientemente ancho como para cubrir posibles cambios Doppler debidos al movimiento del blanco, mientras los más complejos suelen usar la segunda técnica. Actualmente la compresión de pulso suele lograrse usando técnicas de correlación digital. Los equipos militares suelen tener múltiples haces para lograr una cobertura completa mientras los más simples sólo cubren un arco estrecho. Originalmente se usaba un único haz realizando el escaneo perimetral mecánicamente, pero esto era un proceso lento.
Especialmente cuando se usan transmisiones de una sola frecuencia, el efecto Doppler puede usarse para medir la velocidad radial del blanco. La diferencia de frecuencia entre la señal emitida y la recibida se mide y se traduce a velocidad. Dado que los desplazamientos Doppler pueden deberse al movimiento del receptor o del blanco, debe tenerse la primera en cuenta para lograr un valor preciso.
El sonar activo se usa también para medir la distancia en el agua entre dos transductores (emisores-receptores) de sonar o una combinación de hidrófono y proyector. Cuando un equipo recibe una señal de interrogación, emite a su vez una señal de respuesta. Para medir la distancia, un equipo emite una señal de interrogación y mide el tiempo entre esta transmisión y la recepción de la respuesta. La diferencia de tiempo permite calcular la distancia entre dos equipos. Esta técnica, usada con múltiples equipos, puede calcular las posiciones relativas de objetos estáticos o en movimiento.

En época de guerra, la emisión de un pulso activo era tan comprometida para el camuflaje de un submarino que se consideraba una brecha severa de las operaciones.


PUBLICACIÓN REALIZADA POR JHONY BAUTISTA C.I- 18566744
FUENTE http://www.slideshare.net/asp0088/batim-version-1
ASIGNATURA: CAF


Connect to the next generation of MSN Messenger  Get it now!

Wi-Fi y Bluetooth, descripción



Bluetooth fue diseñado como una tecnología de radiofrecuencia para reemplazar al cable: Bajo costo, velocidad moderada y corto alcance (< 10 metros). Puede soportar piconets de hasta ocho dispositivos activos, con un máximo de tres links orientados a conexión sincronos (SCO synchronous connection-oriented). Los SCO links están diseñados para dar soporte a aplicaciones sincronas como telefonía inalámbrica y headsets inalámbricos. Bluetooth también soporta tipos de datos asíncronos sin conexión (ACL asynchronous connectionless) usados para intercambiar datos en aplicaciones en la que no es critico el tiempo. La capa física de Bluetooth usa frecuency-hoping spread spectrum (FHSS) a una tasa de 1600 hops/s y modulación Gaussian frecuency shift keying (GFSK). Basado en las aplicaciones consideradas para la tecnología wireless de Bluetooth la mayoría de los dispositivos Bluetooth transmiten a una nivel de potencia de 1 mW (0 dBm) con un a tasa de transferencia sin procesar de 1 Mb/s.

Como Ethernet, Wi-Fi soporta verdaderas redes multipunto con tipos de datos como paquetes Broadcast, Multicast y Unicast. La MAC address dentro de cada dispositivo permite virtualmente un numero de dispositivos activos en la red. Estos dispositivos realizan contienda para acceder al medio (el aire) utilizando un esquema llamado Carrier Sense Múltiple Access with collision avoidance (CSMA/CA). La capa física de Wi-Fi utiliza Direct Sequence Spread Spectrum (DSSS) a cuatro diferentes tasas de datos utilizando una combinación de binary phase-shift keying (DBPSK) para 1 Mb/s, differential quaternary phase-shift keying (DQPSK) para 2 Mb/s, y QPSK/complementary code keying (CCK) para velocidades mayores: 5.5 and 11 Mb/s. LA potencia de la radio frecuencia puede variar, pero esta típicamente entre 30 y 100 mW (hasta 20 dBm) en la mayoría de los sistemas WLAN comerciales.


Wi-Fi y Bluetooth compartiendo la misma banda de frecuencia

Los sistemas de comunicación wireless usan una o mas frecuencias portadoras (bandas de frecuencia) para comunicarse. Bluetooth y Wi-Fi comparten al misma banda de 2.4 GHz, la cual bajo las regulaciones de Federal Communications Commission (FCC), se extiende de 2.4 hasta 2.4835 GHz. Bajo las reglas de la banda ISM definidas en FCC Part 15.247, esta banda de frecuencia es libre de tarifas. Sin embargo estos sistemas deben operar bajo ciertas restricciones cuyo propósito es permitir que varios sistemas coexistan en tiempo y espacio.
Un sistema puede usar uno de dos métodos para trasmitir en esta banda; ambos son técnicas spread spectrum (SS). La primera es frequency hopping spread spectrum (FHSS) que permite a un dispositivo trasmitir mucha energía en una banda relativamente estrecha, pero por un tiempo limitado. Direct sequence spread spectrum (DSSS) le permite a un dispositivo ocupar un ancho de banda mas amplio con relativa poca energía en un segmento de banda dado y no realiza hops.
Como se dijo anteriormente, Bluetooth selecciono FHSS, usando canales de 1 MHz de ancho y una tasa de hop de 1600 hops/s (625 microsegundos en cada canal de frecuencia). Bluetooth usa 79 canales diferentes en los Estados Unidos y en la mayoría del resto del mundo. IEEE 802.11b (Wi-Fi) opto por DSSS, usando 22 MHz de ancho de banda (pasabanda) para transmitir a velocidades de hasta 11 Mb/s. Un sistema Wi-Fi puede usar cualquiera de los 11 22 MHz ancho subcanales a través de los aceptables 83.5 MHz de los 2.4 GHz de la banda de frecuencia, que obviamente va a resultar en un solapamiento de los canales. Un máximo de tres redes Wi-Fi pueden coexistir sin interferir la una con la otra, dado que solo tres de esos canales de 22 MHz pueden encajar en la banda sin solapamiento. En lugares fuera de los Estados Unidos pueden soportar más o menos de 11 subcanales. Sin embargo sin importar en la porción de la banda donde Wi-Fi opere, compartir con Bluetooth es inevitable. Dos sistemas inalámbricos compartiendo la misma banda de frecuencia pueden potencialmente interferir el uno con el otro.

 Bluetooth y Wi-Fi Casos de Interferencia

Si Bluetooth y Wi-Fi operan al mismo tiempo en la misma banda de frecuencia, ellos van a interferir (colisionar) el uno con el otro. Específicamente, estos sistemas transmiten en frecuencias solapadas (incluyendo el efecto de las bandas laterales), creado ruido coloreado en la banda de uno y del otro. La interferencia entre Bluetooth y Wi-Fi ocurre cuando cualquiera de lo siguiente es verdad:
  • Un receptor Wi-Fi siente una señal Bluetooth al mismo tiempo que una señal Wi-Fi esta siendo enviada hacia el. El efecto es mas pronunciado cuando la señal Bluetooth esta dentro los 22 MHz ancho pasabanda del receptor Wi-Fi.
  • Un receptor Bluetooth siente una señal Wi-Fi al mismo tiempo que una señal Bluetooth esta siendo enviada hacia el; el efecto es mas pronunciado cuando una señal Wi-Fi esta dentro de la pasabanda del receptor Bluetooth.
Vale la pena notar que ni Bluetooth ni Wi-Fi fueron diseñados con mecanismos específicos para combatir la interferencia que uno crea en el otro. Como un sistema de rápido salto en frecuencia (fast frequency-hopping), Bluetooth asume que el va saltar lejos de canales malos, minimizando su exposición a la interferencia. La capa MAC de Wi-Fi, la cual esta basada en el protocolo de Ethernet, asume que varias estaciones comparten el mismo medio, y en consecuencia, si una transmisión falla, es porque dos estaciones Wi-Fi intentaron transmitir a la vez. Mas adelante en este articulo examinaremos como esta suposición conlleva al comportamiento del sistema que empeora el impacto de la interferencia de Bluetooth.

http://es.wikipedia.org/wiki/Wi-Fi


PUBLICACIÓN REALIZADA POR JHONY BAUTISTA
 C.I- 18566744


Connect to the next generation of MSN Messenger  Get it now!

Comunicación por satélites dispositivos activos




Antes de entrar en materia, creemos que es necesario entender una serie de hechos básicos sobre tecnología espacial para luego discutir en detalle los sistemas de navegación por satélite.
Un satélite es transportado a su órbita abordo de un cohete capaz de alcanzar la velocidad suficiente requerida para no verse influenciado por el campo gravitatorio terrestre.
Una vez conseguido esto, es virtualmente posible conseguir cualquier plano o altitud de la órbita mediante la utilización de modernos cohetes. El plano de la órbita se denomina inclinación.
VELOCIDAD DE LA ÓRBITA:
Un satélite puede permanecer en su órbita sólo si su velocidad es lo suficientemente mayor como para vencer la gravedad y menor que la requerida para escapar de la gravedad. La velocidad del satélite es pues como un compromiso entre esos dos factores pero ha de ser absolutamente precisa para la altitud elegida.
 
V=K/(sqrt(r+a)) Km/s

Donde:
V=a velocidad de la órbita en kilómetros por segundo.
a=altitud de la órbita sobre la superficie de la tierra, en Km.
r=el radio medio de la tierra, aproximadamente 6371Km.
K=630
Aunque la tierra no es perfecta y su radio puede variar, vamos a tomar que posee un valor de 6371Km. La velocidad de un satélite con altitud de 200 Km necesitará una V=177Km/s.
La velocidad para un satélite con una altitud de 1075km será de V=7.3km/s (satélite TRANSIT).
 
PERIODO DE LA ÓRBITA:
El periodo que posee un satélite viene dado por la siguiente fórmula:
 
P=K(r+a/r)3/2 minutos
Donde
  P=periodo de una órbita en minutos.
a=altitud de la órbita sobre la superficie terrestre.
r=radio medio de la tierra.
K=84.49.
El periodo para un satélite cuya altitud es de 200 Km es: P=88.45 minutos.
Comunicación por Satélites
A principios de 1960, la American Telephone and Telegraph Company (AT&T) publicó estudios, indicando que unos cuantos satélites poderosos, de diseño avanzado, podían soportar mas tráfico que toda la red AT&T de larga distancia. El costo de estos satélites fue estimado en solo una fracción del costo de las facilidades de microondas terrestres equivalentes. Desafortunadamente, debido a que AT&T era un proveedor de servicios, los reglamentos del gobierno le impedían desarrollar los sistemas de satélites. Corporaciones más pequeñas y menos lucrativas pudieron desarrollar los sistemas de satélites y AT&T continuó invirtiendo billones de dólares cada año en los sistemas de microondas terrestres convencionales. Debido a esto los desarrollos iniciales en la tecnología de satélites tardaron en surgir. 
A través de los años, los precios de la mayoría de los bienes y servicios han aumentado sustancialmente; sin embargo, los servicios de comunicación, por satélite, se han vueltos accesibles cada año. En la mayoría de los casos, los sistemas de satélites ofrecen más flexibilidad que los cables submarinos, cables subterráneos escondidos, radio de microondas en línea de vista, radio de dispersión troposférica, o sistemas de fibra óptica. 
Esencialmente, un satélite es un repetidor de radio en el cielo (transponder). Un sistema de satélite consiste de un transponder, una estación basada en tierra, para controlar el funcionamiento y una red de usuario, de las estaciones terrestres, que proporciona las facilidades para transmisión y recepción de tráfico de comunicaciones, a través del sistema de satélite. Las transmisiones de satélites se catalogan como bus o carga útil. La de bus incluye mecanismos de control que apoyan la operación de carga útil. La de carga útil es la información del usuario que será transportada a través del sistema. Aunque en los últimos años los nuevos servicios de datos y radioemisión de televisión son mas y más demandados, la transmisión de las señales de teléfono de voz convencional (en forma analógica o digital). 

SATELITES ORBITALES
Los satélites mencionados, hasta el momento, son llamados satélites orbitales o no síncronos. Los satélites no síncronos giran alrededor de la Tierra en un patrón elíptico o circular de baja altitud. Si el satélite esta girando en la misma dirección de la rotación de la Tierra y a una velocidad angular superior que la de la Tierra, la órbita se llama órbita progrado. Si el satélite esta girando en la dirección opuesta a la rotación de la Tierra o en la misma dirección, pero a una velocidad angular menor a la de la Tierra, la órbita se llama órbita retrograda. Consecuentemente, los satélites no síncronos están alejándose continuamente o cayendo a Tierra, y no permanecen estacionarios en relación a ningún punto particular de la Tierra. Por lo tanto los satélites no síncronos se tienen que usar cuando están disponibles, lo cual puede ser un corto periodo de tiempo, como 15 minutos por órbita. Otra desventaja de los satélites orbitales es la necesidad de usar un equipo costoso y complicado para rastreo en las estaciones terrestres. Cada estación terrestre debe localizar el satélite conforme esta disponible en cada órbita, y después unir su antena al satélite y localizarlo cuando pasa por arriba. Una gran ventaja de los satélites orbitales es que los motores de propulsión no se requieren a bordo de los satélites para mantenerlos en sus órbitas respectivas.

SATELITES GEOESTACIONARIOS 
Los satélites geoestacionarios o geosíncronos son satélites que giran en un patrón circular, con una velocidad angular igual a la de la Tierra. Consecuentemente permanecen en una posición fija con respecto a un punto específico en la Tierra. Una ventaja obvia es que están disponibles para todas las estaciones de la Tierra, dentro de su sombra, 100% de las veces. La sombra de un satélite incluye todas las estaciones de la Tierra que tienen un camino visible a él y están dentro del patrón de radiación de las antenas del satélite. Una desventaja obvia es que a bordo, se requieren de dispositivos de propulsión sofisticados y pesados para mantenerlos fijos en una órbita. El tiempo de órbita de un satélite geosíncrono es de 24 h. igual que la Tierra.

CLASIFICACIONES ORBITALES, ESPACIAMIENTO Y ASIGNACIONES DE FRECUENCIA  
Hay dos clasificaciones principales para los satélites de comunicaciones: hiladores (spinners) y satélites estabilizadores de tres ejes. Los satélites espinar, utilizan el movimiento angular de su cuerpo giratorio para proporcionar una estabilidad de giro. Con un estabilizador de tres ejes, el cuerpo permanece fijo en relación a la superficie de la Tierra, mientras que el subsistema interno proporciona una estabilización de giro. 
Los satélites geosíncronos deben compartir espacio y espectro de frecuencia limitados, dentro de un arco específico, en una órbita geoestacionaria, aproximadamente a 22,300 millas, arriba del Ecuador. La posición en la ranura depende de la banda de frecuencia de comunicación utilizada. Los satélites trabajando, casi o en la misma frecuencia, deben estar lo suficientemente separados en el espacio para evitar interferir uno con otro. Hay un límite realista del número de estructuras satelitales que pueden estar estacionadas, en un área específica en el espacio. La separación espacial requerida depende de las siguientes variables: 
  • Ancho del haz y radiación del lóbulo lateral de la estación terrena y antenas del satélite.
  • Frecuencia de la portadora de RF.
  • Técnica de codificación o de modulación usada.
  • Límites aceptables de interferencia.
  • Potencia de la portadora de transmisión.
Generalmente, se requieren de 3 a 6º de separación espacial dependiendo de las variables establecidas anteriormente. 
Las frecuencias de la portadora, más comunes, usadas para las comunicaciones por satélite, son las bandas 6/4 y 14/12 GHz. El primer número es la frecuencia de subida (ascendente) (estación terrena a transponder) y el segundo numero es la frecuencia de bajada (descendente) (transponder a estación terrena). Diferentes frecuencias de subida y de bajada se usan para prevenir que ocurra repetición. Entre mas alta sea la frecuencia de la portadora, más pequeño es el diámetro requerido de la antena para una ganancia específica. La mayoría de los satélites domésticos utilizan la banda 6/4 GHz. Desafortunadamente, esta banda también se usa extensamente para los sistemas de microondas terrestres. Se debe tener cuidado cuando se diseña una red satelital para evitar interferncia de, o interferencia con enlaces de microondas establecidas.

MODELOS DE ENLACE DEL SISTEMA SATELITAL 
Esencialmente, un sistema satelital consiste de tres secciones básicas: una subida, un transponder satelital y una bajada. 
Modelo de subida
El principal componente dentro de la sección de subida satelital, es el transmisor de estación terrena. Un típico transmisor de la estación terrena consiste de un modulador de IF, un convertidor de microondas de IF a RF, un amplificador de alta potencia (HPA) y algún medio para limitar la banda del último espectro de salida (por ejemplo, un filtro pasa-bandas de salida). El modulador de IF se convierte la IF convierte las señales de banda base de entrada a una frecuencia intermedia modulada en FM, en PSK o en QAM. El convertidor (mezclador y filtro pasa-bandas) convierte la IF a una frecuencia de portadora de RF apropiada. El HPA proporciona una sensibilidad de entrada adecuada y potencia de salida para propagar la señal al transponder del satélite. Los HPA comúnmente usados son klystons y tubos de onda progresiva. 
Transponder
Un típico transponder satelital consta de un dispositivo para limitar la banda de entrada (BPF), un amplificador de bajo ruido de entrada (LNA), un traslador de frecuencias, un amplificador de potencia de bajo nivel y un filtro pasa-bandas de salida. Este transponder es un repetidor de RF a RF. Otras configuraciones de transponder son los repetidores de IF, y de banda base, semejantes a los que se usan en los repetidores de microondas. 
Modelo de bajada
Un receptor de estación terrena incluye un BPF de entrada, un LNA y un convertidor de RF a IF. Nuevamente, el BPF limita la potencia del ruido de entrada al LNA. El LNA es un dispositivo altamente sensible, con poco ruido, tal como un amplificador de diodo túnel o un amplificador paramétrico. El convertidor de RF a IF es una combinación de filtro mezclador /pasa-bandas que convierte la señal de RF recibida a una frecuencia de IF. 
Enlaces cruzados
Ocasionalmente, hay aplicaciones en donde es necesario comunicarse entre satélites. Esto se realiza usando enlaces cruzados entre satélites o enlaces intersatelitales (ISL). Una desventaja de usar un ISL es que el transmisor y receptor son enviados ambos al espacio. Consecuentemente la potencia de salida del transmisor y la sensibilidad de entrada del receptor se limitan. 
4. Inmarsat y otros sistemas de satélites.
4.1. Introducción.
La primera serie de satélites usados por INMARSAT, comenzando en 1982, fue posible gracias a la intervención de varias fuentes como COMSAT (Programa MARISAT), ESA (Programa MARECS) e INTELSAT (Programa ISV-MCP).
MARISAT y MARECS fueron los precursores de los servicios de demostración y el MCP posibilitó comunicaciones marítimas mediante la incorporación de un módulo especial para esa función en la serie INTELSAT V-A (modificación de la serie V), dicho módulo era similar al ofrecido por MARISAT.
4.2. COSPAS-SARSAT.
4.2.1. Introducción.
Los satélites de INMARSAT III cuentan con un sistema SAR (Búsqueda y Rescate) a bordo, el sistema COSPAS-SARSAT es actualmente el máximo exponente en lo que a búsqueda y rescate vía satélite se refiere.
4.2.2. El sistema.
COSPAS-SARSAT es un sistema internacional de búsqueda y rescate consistente en una constelación de satélites con cobertura global dispuestos en órbita polar (entre 800 y 1000 Km de altitud) y en una red de estaciones terrestres que envían señales de alerta o informaciones de localización a las autoridades encargadas de las labores de rescate ya sea por tierra, mar o aire.
Nace de la unión SARSAT (Search And Rescue Satellite-Aided Tracking) y su homólogo soviético COSPAS (acrónimo ruso de Sistema Espacial para la Búsqueda de Buques en Peligro).
Este programa conjunto está esponsorado por Canadá (pionera en 1982), Francia, Estados Unidos y el propio COSPAS soviético.
4.2.3. Participantes.
Hay 28 países y organizaciones participantes en el funcionamiento del sistema, entre ellos están las 4 partes del acuerdo COSPAS-SARSAT (Canadá, Francia, Rusia y Estados Unidos), 14 proveedores de segmentos terrestres, 8 países usuarios y 2 organizaciones participantes, los países adicionales están en proceso de integración.
Las organizaciones son the International Maritime Organization (IMO), the International Civil Aviation Organization (ICAO), the International Telecommunication Union (ITU), the International Chamber of Shipping (ICS), the International Radio Maritime Committee (CIRM) and the International Federation of Air Line Pilots Associations (IFALPA).
4.2.4. Funcionamiento.
Actuando como repetidores de comunicaciones, los satélites COSPAS-SARSAT reciben señales de alerta emitidas por:
  • Radiobalizas marítimas de emergencia e indicadoras de posición (EPIRBs).
  • Transmisiones aéreas de localización de emergencia (ELTs).
  • Radiobalizas de localización personal (PLBs).
Los satélites retransmiten las señales de alerta a estaciones terrestres denominadas LUTs (Local User Terminal) donde se procesa y determina la localización geográfica del accidente, esta información se envía al Centro de Control de Misiones (MCC) que se encarga de transmitir la posición y otras informaciones pertinentes al Centro de Coordinación de Rescates más apropiados (RCC).
La velocidad y precisión de estas comunicaciones incrementa significativamente las posibilidades de supervivencia de las víctimas del accidente en cuestión.
Hay 14 MCCs operativos situados en 14 países y 6 MCCs bajo test en 6 países, respecto a las LUTs cabe destacar la existencia de 29 operativas distribuidas en 17 países y 4 bajo test en 4 países.
4.2.5. Los satélites.
La configuración del sistema comprende cuatro satélites, dos COSPAS y dos SARSAT.
Los satélites soviéticos están situados en órbita polar a 1000 Km. de altitud y están equipados con instrumental SAR (Búsqueda y Rescate) a 121.5 y 406 MHz.
Los Estados Unidos contribuyen con dos satélites meteorológicos NOAA (National Oceanic and Atmospheric Administration) situados a 850 Km. de altitud en órbita polar y equipados con instrumental SAR a 121.5 y 406 MHz apoyados por Canadá y Francia.
Cada satélite da una vuelta completa a la Tierra en 100 minutos aproximádamente a una velocidad de 7Km por segundo.
Los satélites obtienen imágenes del planeta barriendo zonas con un haz de 4000 Km de ancho.
4.2.6. Resultados.
Desde Septiembre de 1982 hasta Junio de 1995 el sistema COSPAS-SARSAT contribuyó al rescate de 5541 personas en 1800 sucesos SAR:
  • Accidentes aéreos: 1624 personas en 755 sucesos SAR.
  • Accidentes marítimos: 3633 personas en 922 sucesos SAR.
  • Accidentes terrestres: 284 personas en 123 sucesos SAR.
El sistema de 406 MHz fue utilizado en 500 de estos incidentes (2193 personas rescatadas), el sistema de 121.5 MHz se utilizó en el resto de los casos.
4.2.7. Nuevos desarrollos.
El concilio COSPAS-SARSAT está considerando el desarrollo del sistema GEOSAR con satélites de búsqueda y rescate en órbita geoestacionaria que incrementaría el potencial de los ya existentes en órbita polar.
Se ha desarrollado un D&E (Demostración y Evaluación) de GEOSAR .
4.3. GPS.
Inmarsat pretende crear un sistema de navegación (GNSS, Global Navigation Satellite System) totalmente independiente del sistema GPS (EE.UU.) y GLONASS (Rusia), y por tanto, constituiría una alternativa (civil) a ellos.
De hecho, el contratista de Inmarsat, ITT, ha señalado que un sistema global de navegación civil espacial puede ser desarrollado por menos de un millardo de dólares, una pequeña cantidad comparada con el coste del sistema GPS (6-10 millardos de dólares).
Los pasos a seguir hasta constituir la GNSS son los siguientes:
  1. En los satélites Inmarsat-3 se incluye un transpondedor separado que gestiona las señales GPS, aumentando la integrabilidad de este sistema. Lo complementa.
  2.  
  3. Los 12 satélites del proyecto 21 de Inmarsat (Inmarsat-P, ICO) incluirán antenas separadas, transpondedores y relojes atómicos así como otro instrumental necesario para proveer una amplia gama de servicios de navegación, pero no llegará a sustituir al GPS.
  4. En un tercer paso, se constituirá la GNSS independiente de GPS.
Veamos el primer paso dado por Inmarsat para establecer una GNSS propia a partir de los satélites de Inmarsat 3. Concretamente, la tercera generación de Inmarsat se encarga de la integridad del sistema GPS mediante la técnica GIC (GPS Integrity Channel) , está basada en una red terrena que monitoriza los satélites y transmite a los usuarios los resultados, para lo que el uso de satélites geoestacionarios y los satélites de INMARSAT serán los encargados de llevarla a cabo.
Los satélites de INMARSAT III operarán a la misma frecuencia que la señal C/A (código que permite un posicionamiento rápido del receptor pero con precisión media SPS) del GPS (1575.42 MHz) con una secuencia directa pseudoaleatoria con modulación de espectro ensanchado de la misa familia de GPS que llevará la información de integridad además de la de navegación, se comportarán como repetidores con lo que se simplificarán los circuitos del satélite y la información de integridad podrá ser actualizada en tiempo real.
Las estaciones terrenas de enlace con el satélite serán las mismas que proporcionan los servicios de comunicaciones móviles y son operadas por asociaciones que integran INMARSAT (como Comsat) que será responsable de los satélites.
Requisitos del repetidor del satélite:
Los requisitos del repetidor del satélite son tres:
  • PIRE de 28 dBW en el haz de cobertura global para que la potencia de la señal recibida sea semejante a la señal de los satélites GPS.
  • Ancho de banda nominal del repetidor de 2 MHz para poder transmitir la señal de espectro ensanchado modulada con código C/A a la frecuencia de 1.023 MHz.
  • Estabilidad de las características de retardo de grupo del sistema de modo que pueda ser calibrado para su uso en navegación.
Los satélites INMARSAT III poseen un enlace de banda C a banda L y otro de banda C a banda C de baja potencia, la comparación de los retardos producidos en los dos enlaces se usa para compensar el retardo de propagación ionosférica en el enlace de subida.
Al usar INMARSAT III como repetidor se produce un desplazamiento Doppler adicional debido al enlace de la estación terrena con el satélite, para que la señal recibida sea compatible con la señal GPS se debe compensar en tiempo real el enlace de subida al satélite adelantando la señal de reloj una cantidad igual al retardo del enlace de subida y se desplaza ligeramente la frecuencia de la portadora, este método de generar una señal de reloj virtual en el satélite se denomina Generación de Señal en Bucle Cerrado.
Presentación
Los satélites de radioaficionado son una de las áreas de la radioafición que en México menos se practica. La creencia a que operar satélites es complejo y caro no es necesariamente cierta: hay satélites que podemos trabajar sin tener que estudiar el tema por meses ni contar con equipo sofisticado.
Aunque parezca difícil de creer en la mayoría de nuestros cuartos de radio existen los equipos necesarios para iniciarse en este campo de la radioexperimentación.
La presente es una lista de preguntas básicas sobre la operación satelital con sus correspondientes respuestas. Su nivel es elemental e introductorio y es muy probable que quién desee operar algún satélite deba de consultar otras fuentes, mismas que se citan al final del documento. 73s de XE1KK.

FUENTE
http://www.monografias.com/trabajos12/comsat/comsat.shtml


PUBLICACIÓN REALIZADA POR JHONY BAUTISTA C-I-18566744


Explore the seven wonders of the world Learn more!

Invite your mail contacts to join your friends list with Windows Live Spaces. It's easy! Try it!